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Deep learning for prediction of colorectal cancer 
outcome: a discovery and validation study
Ole-Johan Skrede*, Sepp De Raedt*, Andreas Kleppe, Tarjei S Hveem, Knut Liestøl, John Maddison, Hanne A Askautrud, Manohar Pradhan, 
John Arne Nesheim, Fritz Albregtsen, Inger Nina Farstad, Enric Domingo, David N Church, Arild Nesbakken, Neil A Shepherd, Ian Tomlinson, 
Rachel Kerr, Marco Novelli, David J Kerr, Håvard E Danielsen

Summary
Background Improved markers of prognosis are needed to stratify patients with early-stage colorectal cancer to refine 
selection of adjuvant therapy. The aim of the present study was to develop a biomarker of patient outcome after 
primary colorectal cancer resection by directly analysing scanned conventional haematoxylin and eosin stained 
sections using deep learning.

Methods More than 12 000 000 image tiles from patients with a distinctly good or poor disease outcome from 
four cohorts were used to train a total of ten convolutional neural networks, purpose-built for classifying supersized 
heterogeneous images. A prognostic biomarker integrating the ten networks was determined using patients with a 
non-distinct outcome. The marker was tested on 920 patients with slides prepared in the UK, and then independently 
validated according to a predefined protocol in 1122 patients treated with single-agent capecitabine using slides 
prepared in Norway. All cohorts included only patients with resectable tumours, and a formalin-fixed, paraffin-
embedded tumour tissue block available for analysis. The primary outcome was cancer-specific survival.

Findings 828 patients from four cohorts had a distinct outcome and were used as a training cohort to obtain clear 
ground truth. 1645 patients had a non-distinct outcome and were used for tuning. The biomarker provided a hazard 
ratio for poor versus good prognosis of 3·84 (95% CI 2·72–5·43; p<0·0001) in the primary analysis of the validation 
cohort, and 3·04 (2·07–4·47; p<0·0001) after adjusting for established prognostic markers significant in univariable 
analyses of the same cohort, which were pN stage, pT stage, lymphatic invasion, and venous vascular invasion.

Interpretation A clinically useful prognostic marker was developed using deep learning allied to digital scanning of 
conventional haematoxylin and eosin stained tumour tissue sections. The assay has been extensively evaluated in 
large, independent patient populations, correlates with and outperforms established molecular and morphological 
prognostic markers, and gives consistent results across tumour and nodal stage. The biomarker stratified 
stage II and III patients into sufficiently distinct prognostic groups that potentially could be used to guide selection of 
adjuvant treatment by avoiding therapy in very low risk groups and identifying patients who would benefit from more 
intensive treatment regimes.

Funding The Research Council of Norway.

Copyright © 2020 Elsevier Ltd. All rights reserved.

Introduction
Biomarkers are increasingly being used to match 
anticancer therapy to specific tumour genotypes, 
protein, and RNA expression profiles, usually in 
patients with advanced disease.1–3 One example of this 
is selection of KRAS-wild-type colorectal cancers for 
treatment with epidermal growth factor receptor 
inhibitors.4 However, in the adjuvant setting for colo
rectal cancer, the primary question is binary (whether 
to offer treatment at all) and subsequent selection of 
drugs, dose, and schedule is predominantly driven 
by stage rather than by companion diagnostics. Refine
ment of prognostic models could allow a more targeted 
approach to selection of adjuvant therapies by defining 
subgroups in which the absolute benefits of adjuvant 
chemotherapy are minimal relative to surgery alone 
and, at the other end of the spectrum, patients who 

might benefit from prolonged combination chemo
therapy because of their poor survival rate.5–8

More than two decades of adjuvant trials in patients 
with early-stage colorectal cancer using fluoropyri
midines, in combination with cytotoxic agents such as 
oxaliplatin, have yielded an improved overall survival of 
around 3–5% for patients with stage II or IIIA colorectal 
cancer. Many patients are cured by surgery alone, while 
about 25% will recur despite adjuvant chemotherapy. 
The chemotherapy-associated death rate is likely to be 
0·5–1%, and 20% of patients will experience substantial 
side-effects from treatment. The risk–benefit ratio is 
marginal, but could potentially be much better if 
subgroups could be defined as patients having a higher 
or lower risk of recurrence and cancer-specific death.9–12

Although clinically validated prognostic biomarkers 
would facilitate adjuvant therapeutic decisions, very few 
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have been sufficiently robustly validated for routine 
clinical application. A case can be made for assessment 
of mismatch repair status,13,14 as patients with mismatch 
repair-deficient tumours tend to have a good prognosis. 
We have recently reported that measurement of tumour 
cellular DNA content (ploidy) in combination with 
stromal fraction can stratify patients with stage II 
tumours into very good, intermediate, and poor 
prognostic groups.15 An analysis has shown that driver 
mutations and RNA signatures are individually weak 
prognostic markers and unable to guide clinical decision 
making.8,14

Deep learning refers to the class of machine learning 
methods that make use of successively more abstract 
representations of the input data to perform a specific 
task. These methods use training data to learn how 
these representations should be generated in a manner 
appropriate for the given task. By contrast, traditional 
machine learning uses handcrafted features to create 
representations of the input data that are applied to 
perform the task. In many applications, deep learning 
has been shown to be superior to other machine 
learning techniques, and is expected to transform 
current medical practice. Convolutional neural net
works have excelled in many image interpretation 
tasks and could be hypothesised to retrieve additional 
information from histopathology images. The aim of 
this study was to use deep learning to analyse con
ventional whole-slide images to develop an automatic 
prognostic biomarker for patients resected for primary 
colorectal cancer.

Methods
Training and tuning cohorts
Four different cohorts were used for training and tuning 
to achieve a broad patient representation and thereby 
improve the ability to generalise results to other cohorts. 
Three cohorts were consecutive series of stage I, II, or III 
tumours from patients with colorectal cancer treated at 
hospitals with both rural and urban catchment areas: 
patients treated between 1988 and 2000 at Akershus 
University Hospital (Ahus), Norway;16 patients treated 
between 1993 and 2003 at Aker University Hospital, 
Norway;15 and patients treated in Gloucester, UK, between 
1988 and 1996 and included in the Gloucester Colorectal 
Cancer Study, UK.17,18 The fourth cohort consisted of 
patients with stage II or III colorectal cancer treated at 
151 UK hospitals in 2002–04 and included in the VICTOR 
trial (ISRCTN registry, ISRCTN98278138).19 Common 
inclusion criteria for the four cohorts were resectable 
stage I, II, or III non-synchronous colorectal cancer, 
slides with haematoxylin and eosin (H&E) stained 
tumour tissue section of adequate quality, and at least 
one tile within the automatically segmented tumour 
region (appendix pp 52–62).

To obtain clear ground truth, patients with a so-called 
distinct outcome, either good or poor, were used as a 
training cohort. A patient was assigned to the good 
outcome group if they were younger than 85 years at 
surgery, had more than 6 years follow-up after surgery, 
and had no record of recurrence or cancer-specific death. 
The poor outcome group consisted of patients younger 
than 85 years at surgery with cancer-specific death 

Research in context

Evidence before this study
Digital image analysis is one of the areas in which deep 
learning has achieved the most important results. We searched 
PubMed on June 12, 2019, without language or date 
restrictions using the terms “deep learning”, “prediction”, 
“survival”, “cancer”, and “histology”. We systematically 
reviewed the 214 search results, and found 18 original 
research studies which applied deep learning to predict patient 
outcome or related attributes using histopathology images.

In 16 studies, the patient outcome was indirectly predicted by 
identifying attributes known to correlate with patient 
outcome—eg, stromal fraction, mitotic count, or Gleason 
pattern. Two studies reported on direct prediction of survival, 
but neither presented a marker for automatic prediction of 
patient outcome from scanned whole-slide sections; 
one required manual annotation to locate interesting tissue 
regions, and the other classified tissue microarray spots. 
Notably, the two studies did not evaluate their biomarker in 
independent cohorts; the performance was instead 
estimated using cross-validation in the same cohort as was 
used for training, which can easily lead to overoptimistic 
estimates.

Added value of this study
We have applied deep learning to develop a biomarker for 
automatic prediction of cancer-specific survival directly from 
scanned haematoxylin and eosin stained, formalin-fixed, 
paraffin-embedded tumour tissue sections. Independent 
validation demonstrated that the biomarker improved 
prediction of cancer-specific survival by stratifying patients with 
stage II and III colorectal cancer into distinct prognostic groups, 
supplementing established prognostic markers, and 
outperforming most existing markers in terms of hazard ratios. 
The marker could potentially be used to improve selection of 
adjuvant treatment after resection of colorectal cancer by 
identifying patients at very low risk who could have been cured 
by surgery alone, as well as patients at high risk who are much 
more likely to benefit from more intensive regimes.

Implications of all the available evidence
Deep learning can be used to develop biomarkers for 
automatic prediction of patient outcome directly from 
conventional histopathology images. In colorectal cancer, 
the marker was found to be a clinically useful prognostic 
marker in the analysis of a large series of patients who 
received consistent, modern cancer treatment.

See Online for appendix
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between 100 days (inclusive) and 2·5 years (exclusive) 
after surgery. Patients not satisfying either of these group 
criteria were defined as having a non-distinct outcome, 
and these patients were used for tuning. The protocol 
specifies additional cohort details (appendix pp 52–56).

Test cohort
The test cohort consisted of patients from the Gloucester 
Colorectal Cancer Study, UK.17,18 Whole-slide images 
were obtained from different formalin-fixed paraffin-
embedded (FFPE) tumour tissue blocks than those used 
for the training and tuning cohorts, and the slides were 
also prepared at different laboratories.

Validation cohort
The marker was independently validated according to 
the predefined protocol (appendix pp 52–80). The 
validation cohort consisted of patients from 170 hospitals 
in seven countries recruited to the QUASAR 2 trial 
(ISRCTN registry, ISRCTN45133151).20 Inclusion criteria 
were age 18 years or older, colorectal adenocarcinoma 
histologically proven to be R0 M0 stage III or high-
risk stage II, primary resection 4–10 weeks before 
randomisation, WHO performance status score 0 or 1, 
and life expectancy (with comorbidities, but excluding 
cancer risk) of at least 5 years. Exclusion criteria and 
other details are presented in the appendix (pp 73–76). 
All patients received adjuvant therapy, either capecitabine 
plus bevacizumab, or capecitabine alone, with equal 
disease-free and overall survival in both trial groups.20

Sample preparation
Slides from the VICTOR cohort were prepared in Oxford, 
UK, while the slides in the other three training and 
tuning cohorts were prepared at the Institute for Cancer 
Genetics and Informatics (ICGI), Norway. Introducing 
this variation in the development phase was hypothesised 
to increase the robustness and generalisability of the 
trained marker. Slides in the test cohort were prepared as 
part of the routine histopathological examination in 
Cheltenham, UK, and the performance in this cohort 
should thus indicate the prognostic ability when the 
marker is assayed at a different laboratory using original 
slides. Slides in the validation cohort were prepared at 
ICGI. All slides were made by staining a 3 µm FFPE 
tissue block section with H&E, and a pathologist (MP) 
ascertained that it contained tumour tissue. Whole-
slide images were acquired at the highest resolution 
available (40× magnification) on two scanners, an Aperio 
AT2 (Leica Biosystems, Germany) and a NanoZoomer XR 
(Hamamatsu Photonics, Japan).

Areas with high tumour content were identified using 
a segmentation network that was trained on a subset of 
the training and tuning cohorts (appendix pp 57–61). A 
whole-slide image with the 40× resolution typically 
contained an order of 100 000 × 100 000 pixels, multiple 
orders of magnitude larger than images currently 

feasible for classification by deep learning methods. To 
preserve prognostic information contained at high 
resolution, whole-slide images were partitioned into 
multiple non-overlapping image regions called tiles at 
10× and 40× resolutions, and each pixel at 40× represents 
a physical size of approximately 0·24 × 0·24 µm².

Classification
Five networks were trained on the 634 564 tiles at 
10× resolution and five networks on the 11 591 555 tiles 
at 40× resolution from the 1652 Aperio AT2 and 
NanoZoomer XR whole-slide images in the training 
cohort with the patients’ distinct outcomes as ground 
truth. All networks were DoMore v1 networks, which 
we designed for classifying supersized heterogeneous 
images. The DoMore v1 network was built around mul
tiple instance learning and comprised of a MobileNetV221 
representation network, a Noisy-AND pooling function,22 
and a fully connected classification network similar to 
the one used by Kraus and colleagues22 (figure 1). Because 
of spatial heterogeneity, labelling a tile with the label of 
its whole-slide image might be problematic. Instead, the 
networks were trained on labelled collections of tiles. A 
collection contained tiles from a single whole-slide image, 
which label it inherits. Collections of tiles were processed 
by the representation network before the resulting tile 
representations were pooled and classified. The entire 
network was trained end-to-end (ie, directly from image 
to patient outcome), and each training iteration used a 
batch size of 32 collections with 64 tiles each. The use of 
this many tiles was possible because we used a novel 
gradient approximation technique that substantially 
reduces memory usage during training (appendix 
pp 4–6). The Noisy-AND pooling function applied a 
trained non-linear function on tile representation aver
ages. This function enhances robustness against tiles not 
representing the ground truth and, together with the 
large number of tiles, alleviates the issues of spatial 
heterogeneity. During inference, the network processed 
all tiles in the whole-slide image.

The networks were trained beyond apparent con
vergence using TensorFlow 1.10, and a model was selected 
from each network training using the performance in the 
tuning cohort with the c-index as metric, resulting in 
five models for each resolution (appendix pp 62–71). 
Each of the five models provides a score reflecting the 
probability of poor outcome, and the average was defined 
as the ensemble score. For use in categorical markers, 
suitable thresholds for the 10× and the 40× ensemble 
scores were determined by evaluations in the tuning 
cohort to define the ensemble classifiers (appendix 
pp 71–73). Furthermore, evaluations in the development 
phase indicated that combining 10× and 40× markers 
might be desirable, and two such markers were defined, 
one continuous and one categorical. The continuous 
DoMore-v1-colorectal cancer (DoMore-v1-CRC) score was 
defined as the average of the 10× and the 40× ensemble 
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scores. The categorical DoMore-v1-CRC classifier assigned 
patients to good prognosis if both ensemble classifiers 
predicted a good outcome, to uncertain prognosis if the 
ensemble classifiers predicted differently, and to poor 
prognosis if both ensemble classifiers predicted a poor 
outcome. The appendix video visually presents how the 
DoMore-v1-CRC classifier was trained, tuned, tested, 
and independently validated. In a post-hoc analysis, the 
continuous DoMore-v1-CRC score was categorised into 
five risk groups (appendix p 6).

Inception v3, a state-of-the-art convolutional neural 
network, was trained, tuned, and evaluated with the same 
study setup as the DoMore v1 network (appendix 
pp 62–73), and tested as a secondary analysis in the 
QUASAR 2 validation cohort (appendix p 78). Although 
the DoMore-v1-CRC marker was trained using multiple 
instance learning, each single tile was labelled with the 

label of its whole-slide image in training of the Inception 
v3 marker. The image distortion algorithm and network 
hyperparameters were determined independently of the 
DoMore v1 network in the discovery phase, resulting in 
slightly different choices for the Inception v3 network 
(appendix pp 66–67).

Statistical analysis
This study conformed to the REMARK guideline23 and 
relevant aspects of the guideline proposed by Luo and 
colleagues24 (appendix pp 7–8). Primary and secondary 
analyses were planned before the evaluations in the 
validation cohort and are described in the protocol.

The predefined primary analysis for each scanner was 
univariable cancer-specific survival analysis of the 
DoMore-v1-CRC classifier; for simplicity, we first present 
results for the Aperio AT2 scanner and then address 

Figure 1: Pipeline of DoMore-v1-CRC classification
(A) A whole-slide image is segmented, and the segmented regions tiled at 40 × resolution and 10× resolution. For each resolution, the five trained models each produce one score reflecting the 
probability of poor outcome. The average of those scores is the ensemble score, one for 10× and another for 40×. If the ensemble score is above a certain threshold, the whole-slide image is classified as 
poor prognosis. The DoMore-v1-CRC class is determined by the agreement between the two ensemble classifications. (B) The DoMore v1 network is comprised of a representation network 
(MobileNetV2),21 a pooling function (Noisy-AND),22 and a simple fully connected classification network. All components of the DoMore v1 network involve trainable parameters, and the entire 
network is trained end-to-end. All tiles from a whole-slide image are processed by the representation network one by one, resulting in a collection of tile representations. The pooling function reduces 
the representations into two numbers, which are then processed by the classification network to produce the score outputted by the model. CRC=colorectal cancer.
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scanner differences. The classifier was included as the 
only variable in a Cox model to compute the hazard ratio 
(HR) with 95% CI of patients with uncertain and poor 
prognosis relative to patients with good prognosis. 
The proportional hazards assumption was found to be 
satisfactorily fulfilled using log–log plots (appendix p 26). 
The Mantel-Cox log-rank test was used to assess whether 
the classifier predicted cancer-specific survival.

Both the classifier and the continuous score were 
evaluated in multivariable Cox models as secondary and 
post-hoc analyses, including markers available at the 
time of analysis (patients with at least one missing 
value were excluded). The p values in the multivariable 

analyses were calculated using the Wald χ² test, both 
when testing the difference between a specific category 
of a marker and its reference category, and when testing 
the overall difference between the categories of a 
marker. Associations between the classifier and other 
markers were evaluated with Spearman’s correlation 
coefficients. To calculate classification metrics for 3-year 
cancer-specific survival, patients without an event and 
with less than a 3-year follow-up were excluded, and 
events after 3 years were not included in the analysis. 
Category-free net reclassification improvement (NRI) 
was computed with the Kaplan-Meier estimates of 
5-year cancer-specific survival. A two-sided p value of 
less than 0·05 was considered significant, and the 
confidence level of CIs is 95%. The bias-corrected and 
accelerated bootstrap CIs were computed for NRIs, 
c-indices, and areas under the curves (AUCs) using 
10 000 bootstrap replicates and an acceleration constant 
was estimated using leave-one-out cross-validation. 
Time to cancer-specific survival in the validation cohort 
was calculated from date of randomisation to date 
of cancer-specific death or loss to follow-up. Survival 
analyses were done with Stata/SE 15.1.

Role of the funding source
The funders had no role in study design, data collection, 
data analysis, data interpretation, writing the report, or 
the decision to submit the paper for publication. The 
corresponding author had full access to all data and the 
final responsibility to submit for publication.

Results
Four cohorts were used for training and tuning, 
160 patients were included from the Ahus cohort, 
576 patients from the Aker cohort, 970 patients from the 
Gloucester cohort, and 767 patients from the VICTOR 
trial cohort (appendix pp 52–56). 828 patients from these 
four cohorts had a distinct outcome (good or poor) and 
were used as a training cohort to obtain clear ground 
truth. 1645 patients had a non-distinct outcome and were 
used for tuning. Patient demographics are summarised 
in table 1.

The DoMore-v1-CRC classifier was a strong predictor 
of cancer-specific survival in the primary analysis of the 
1122 patients in the validation cohort (for uncertain vs 
good prognosis, HR 1·89, 95% CI 1·14–3·15; for poor vs 
good prognosis 3·84, 2·72–5·43; p<0·0001; figure 2). 
The classifier remained strong in multivariable analysis 
(for uncertain vs good prognosis, HR 1·56, 0·92–2·65, 
p=0·10; for poor vs good prognosis, 3·04, 2·07–4·47, 
p<0·0001; table 2) adjusting for established prognostic 
markers significant in univariable analyses: pN stage, 
pT stage, lymphatic invasion, and venous vascular inva
sion (appendix p 9).

The sensitivity was 52% (95% CI 41–63), specificity 
78% (75–81), positive predictive value 19% (14–25), 
negative predictive value 94% (92–96), and the proportion 

Training cohort 
(n=828)

Tuning cohort 
(n=1645)

Test cohort 
(n=920)

Validation cohort 
(n=1122)

Age, years 69 (61–75) 70 (61–77) 71 (64–78) 65 (59–71)

Sex

Female 402 (49%) 689 (42%) 421 (46%) 477 (43%)

Male 426 (51%) 956 (58%) 499 (54%) 645 (57%)

Stage

I 101 (12%) 102 (6%) 70 (8%) ··

II 317 (38%) 797 (48%) 354 (38%) 402 (36%)

III 410 (50%) 746 (45%) 496 (54%) 720 (64%)

pN stage

pN0 415 (50%) 891 (54%) 425 (46%) 402 (36%)

pN1 241 (29%) 492 (30%) 258 (28%) 508 (45%)

pN2 167 (20%) 239 (15%) 237 (26%) 183 (16%)

Missing 5 (1%) 23 (1%) 0 29 (3%)

pT stage

pT1 26 (3%) 30 (2%) 6 (1%) 17 (2%)

pT2 110 (13%) 137 (8%) 65 (7%) 71 (6%)

pT3 464 (56%) 1034 (63%) 411 (45%) 582 (52%)

pT4 223 (27%) 423 (26%) 437 (48%) 404 (36%)

Missing 5 (1%) 21 (1%) 1 (<1%) 48 (4%)

Histological grade

1 77 (9%) 196 (12%) 134 (15%) 45 (4%)

2 568 (69%) 1151 (70%) 489 (53%) 846 (75%)

3 178 (21%) 280 (17%) 297 (32%) 168 (15%)

Missing 5 (1%) 18 (1%) 0 63 (6%)

Location

Rectum 222 (27%) 457 (28%) 311 (34%) 165 (15%)

Distal colon 262 (32%) 533 (32%) 280 (30%) 451 (40%)

Proximal colon 307 (37%) 505 (31%) 329 (36%) 453 (40%)

Missing 37 (4%) 150 (9%) 0 53 (5%)

Adjuvant treatment

No 467 (56%) 826 (50%) 538 (58%) 0

Chemotherapy 173 (21%) 397 (24%) 51 (6%) 1122 (100%)

Radiotherapy 11 (1%) 6 (<1%) 14 (2%) 0 

Chemotherapy and 
radiotherapy

3 (<1%) 9 (1%) 3 (<1%) 0

Missing 174 (21%) 407 (25%) 314 (34%) 0

Follow-up time, years 6·4 (1·7–8·2) 4·0 (2·2–5·2) 2·4 (1·0–4·6) 4·6 (3·3–5·1)

Data are median (IQR) or n (%).

Table 1: Baseline characteristics in the training, tuning, test, and validation cohorts
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Figure 2: Kaplan-Meier analysis of cancer-specific survival by DoMore-v1-CRC classifier, evaluated on Aperio AT2 slide images in the QUASAR 2 validation cohort
(A) All patients were evaluated with the predefined DoMore-v1-CRC classifier for the primary analysis. (B) All patients were evaluated with the DoMore-v1-CRC classifier variant with five categories 
in a post-hoc analysis. (C) Patients with stage II (equivalent to pN0) cancer were evaluated with the predefined DoMore-v1-CRC classifier in a secondary analysis. (D) Patients with stage III cancer 
were evaluated with the predefined DoMore-v1-CRC classifier in a secondary analysis. (E) pN1 patients were evaluated with the predefined DoMore-v1-CRC classifier in a post-hoc analysis. 
(F) pN2 patients were evaluated with the predefined DoMore-v1-CRC classifier in a post-hoc analysis. CRC=colorectal cancer. HR=hazard ratio. 
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of correctly classified patients (accuracy) was 76% (73–79) 
when comparing 3-year cancer-specific survival for the 
good prognosis group of the DoMore-v1-CRC classifier 
with the uncertain and poor prognosis groups. When 
comparing good and uncertain prognosis with poor 
prognosis, the sensitivity was 69% (95% CI 58–78), speci
ficity 66% (63–69), positive predictive value 17% (13–21), 
negative predictive value 96% (94–97), and accuracy 
67% (63–69).

The constituents of the DoMore-v1-CRC classifier, 
the 10× and the 40× ensemble classifiers, were strong 
predictors in univariable (appendix p 27) and multi
variable analyses (appendix pp 10–11). The ensemble 
classifiers performed similarly as the best classifiers 
based on one of the ten individual models that consti
tuted the ensemble models (appendix pp 12 and 28–29). 
The continuous ensemble scores were also strong 
predictors in univariable (appendix p 9) and multivari
able analyses (appendix pp 13–15). The DoMore-v1-CRC 
score was strongly associated with the patient outcome 
(appendix p 30), and provided a c-index of 0·674 (95% CI 
0·624–0·719; appendix p 16) in all validation patients 
and an AUC of 0·713 (0·624–0·789; appendix p 31) in 
patients with a distinct outcome. The c-index and AUC 

of the 10× ensemble score were similar to the values 
obtained for the DoMore-v1-CRC score (appendix 
pp 16 and 31).

The DoMore-v1-CRC classifier was a significant 
predictor of cancer-specific survival in stage II (for poor 
vs good prognosis, HR 2·71, 95% CI 1·25 to 5·86, 
p=0·011; figure 2C) and stage III (poor vs good prognosis, 
4·09, 2·77 to 6·03, p<0·0001; figure 2D), and this was 
confirmed in multivariable analysis (table 2) and for the 
continuous score (appendix pp 9, 13). The categorical 
marker identified patient groups with substantially 
different cancer-specific survival periods in stage IIIB 
and IIIC (appendix p 32), and also identified significant 
differences within pN stages (figures 2C, E, and F) and 
pT stages (pT1–3 vs pT4; appendix p 33). The category-
free NRI of supplementing substage with the DoMore-
v1-CRC class for prediction of 5-year cancer-specific 
survival was 61·6% (95% CI 43·5 to 79·3); the event-NRI 
was 3·2% (–13·2 to 20·0), and the non-event-NRI was 
58·3% (52·7 to 63·8).

The DoMore-v1-CRC classifier correlated with a num
ber of factors such as age, pN stage, pT stage, histological 
grade, location, tumour sidedness, BRAF mutation, 
and microsatellite instability (table 3). The association 

Stage II and III Stage II Stage III

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

DoMore-v1-CRC ·· <0·0001* ·· 0·028* ·· <0·0001*

Good prognosis 1 (ref) ·· 1 (ref) ·· 1 (ref) ··

Uncertain 1·56 (0·92–2·65) 0·10 1·22 (0·35–4·24) 0·76 2·14 (1·15–3·99) 0·017

Poor prognosis 3·04 (2·07–4·47) <0·0001 2·71 (1·25–5·86) 0·011 2·95 (1·81–4·82) <0·0001

pN stage ·· <0·0001* ·· ·· ·· ··

pN0 1 (ref) ·· ·· ·· ·· ··

pN1 1·84 (1·13–2·98) 0·014 ·· ·· 1 (ref) ··

pN2 5·94 (3·71–9·52) <0·0001 ·· ·· 3·31 (2·14–5·13) <0·0001

pT stage ·· 0·0058* ·· ·· ·· 0·014*

pT1 0 (0–∞) 1 ·· ·· 0 (0–∞) 1

pT2 1·86 (0·90–3·86) 0·096 ·· ·· 1·68 (0·64–4·45) 0·29

pT3 1 (ref) ·· ·· ·· 1 (ref) ··

pT4 1·75 (1·22–2·51) 0·0024 ·· ·· 2·07 (1·33–3·22) 0·0013

Lymphatic invasion

No 1 (ref) ·· ·· ·· 1 (ref) ··

Yes 1·66 (1·07–2·56) 0·023 ·· ·· 1·98 (1·20–3·28) 0·0079

Venous vascular invasion

No 1 (ref) ·· ·· ·· 1 (ref) ··

Yes 1·07 (0·76–1·51) 0·71 ·· ·· 0·98 (0·64–1·52) 0·94

Sidedness

Left ·· ·· ·· ·· 1 (ref) ··

Right ·· ·· ·· ·· 1·09 (0·70–1·70) 0·69

BRAF

Wild type ·· ·· ·· ·· 1 (ref) ··

Mutated ·· ·· ·· ·· 1·39 (0·81–2·40) 0·24

The multivariable model included the DoMore-v1-CRC class evaluated on Aperio AT2 slide images and established prognostic markers that were significant in the corresponding 
stage-specific univariable analyses in the validation cohort. HR=hazard ratio. CRC=colorectal cancer. *Wald test of difference between categories of the variable.

Table 2: Multivariable cancer-specific survival analyses in the validation cohort



Articles

www.thelancet.com   Vol 395   February 1, 2020	 357

between the DoMore-v1-CRC classifier and histological 
grading was further studied in the test cohort, in 
which all gradings were centrally reviewed by a highly 
experienced pathologist (NAS).17,18 Among 133 tumours 
characterised as well differentiated, the DoMore-v1-CRC 

classifier assigned 101 tumours as good prognosis, 
18 as uncertain, and 14 as poor prognosis (appendix 
p 17). The moderately differentiated tumours were 
evenly distributed among the DoMore-v1-CRC classes. 
Of 292 poorly differentiated tumours, the marker 

DoMore-v1-CRC classification Spearman’s correlation

Good prognosis (n=704) Uncertain (n=136) Poor prognosis (n=270) ρ (95% CI) p value

Age (continuous), years 64 (58–71) 65 (60–71) 66 (60–72) 0·07 (0·01 to 0·13) 0·024

Age (dichotomous), years ·· ·· ·· 0·03 (–0·03 to 0·09) 0·38

≤72 568 (81%) 112 (82%) 209 (77%) ·· ··

>72 136 (19%) 24 (18%) 61 (23%) ·· ··

Sex ·· ·· ·· –0·02 (–0·08 to 0·04) 0·59

Female 297 (42%) 53 (39%) 122 (45%) ·· ··

Male 407 (58%) 83 (61%) 148 (55%) ·· ··

Stage ·· ·· ·· 0·04 (–0·02 to 0·10) 0·20

II 261 (37%) 48 (35%) 88 (33%) ·· ··

III 443 (63%) 88 (65%) 182 (67%) ·· ··

Stage with substage ·· ·· ·· 0·15 (0·09 to 0·21) <0·0001

IIA 143/672 (21%) 19/133 (14%) 28/256 (11%) ·· ··

IIB 110/672 (16%) 27/133 (20%) 54/256 (21%) ·· ··

IIIA 67/672 (10%) 2/133 (2%) 6/256 (2%) ·· ··

IIIB 269/672 (40%) 51/133 (38%) 104/256 (41%) ·· ··

IIIC 83/672 (12%) 34/133 (26%) 64/256 (25%) ·· ··

pN stage ·· ·· ·· 0·10 (0·04 to 0·16) <0·0001

pN0 261/683 (38%) 48/135 (36%) 88/263 (33%) ·· ··

pN1 339/683 (50%) 53/135 (39%) 111/263 (42%) ·· ··

pN2 83/683 (12%) 34/135 (25%) 64/263 (24%) ·· ··

pT stage ·· ·· ·· 0·26 (0·21 to 0·32) <0·0001

pT1 15/672 (2%) 0 2/256 (1%) ·· ··

pT2 61/672 (9%) 3/134 (2%) 6/256 (2%) ·· ··

pT3 402/672 (60%) 75/134 (56%) 100/256 (39%) ·· ··

pT4 194/672 (29%) 56/134 (42%) 148/256 (58%) ·· ··

Lymphatic invasion ·· ·· ·· 0·04 (–0·02 to 0·10) 0·20

No 599/661 (91%) 122/132 (92%) 220/253 (87%) ·· ··

Yes 62/661 (9%) 10/132 (8%) 33/253 (13%) ·· ··

Venous vascular invasion ·· ·· ·· 0·05 (–0·01 to 0·11) 0·11

No 409/666 (61%) 74/132 (56%) 145/257 (56%) ·· ··

Yes 257/666 (39%) 58/132 (44%) 112/257 (44%) ·· ··

Histological grade ·· ·· ·· 0·14 (0·08 to 0·20) <0·0001

1 27/668 (4%) 7/127 (6%) 8/253 (3%) ·· ··

2 565/668 (85%) 88/127 (69%) 186/253 (74%) ·· ··

3 76/668 (11%) 32/127 (25%) 59/253 (23%) ·· ··

Location ·· ·· ·· 0·15 (0·09 to 0·21) <0·0001

Rectum 118/665 (18%) 21/131 (16%) 23/261 (9%) ·· ··

Distal colon 301/665 (45%) 46/131 (35%) 100/261 (38%) ·· ··

Proximal colon 246/665 (37%) 64/131 (49%) 138/261 (53%) ·· ··

Sidedness ·· ·· ·· 0·14 (0·08 to 0·20) <0·0001

Left 419/665 (63%) 67/131 (51%) 123/261 (47%) ·· ··

Right 246/665 (37%) 64/131 (49%) 138/261 (53%) ·· ··

KRAS ·· ·· ·· –0·06 (–0·12 to 0·00) 0·069

Wild type 410/634 (65%) 86/118 (73%) 169/242 (70%) ·· ··

Mutated 224/634 (35%) 32/118 (27%) 73/242 (30%) ·· ··

(Table 3 continues on next page)
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assigned 223 as poor prognosis, 36 as uncertain, and 
33 as good prognosis. Thus, the DoMore-v1-CRC class 
was clearly associated with tumour differentiation. The 
large proportion of tumours classified as moderately 
differentiated (489 [53%] of 920 in the test cohort and 
846 [75%] of 1122 in the validation cohort) restricts the 
usefulness of this grading system, but these patients 
could also be risk stratified by the DoMore-v1-CRC 
marker (appendix p 34).

Median processing time per patient for the entire 
classification pipeline (ie, from scan to predicted patient 
outcome) was 2·8 min (IQR 1·8–3·9) in the validation 
cohort on a computer with an NVIDIA GeForce RTX 
2080 Ti and an Intel Core i7–7700K.

Inception v3 provided a marker of cancer-specific 
survival with a slightly worse performance than the 
DoMore-v1-CRC classifier (appendix pp 16, 35–36).

In the test cohort with slides from 920 patients 
prepared at a different hospital, the classifier provided 
similar HRs (appendix p 37) as in the validation cohort 
(figure 2), supporting that it is robust against inter-
laboratory differences in tissue preparation and staining.

When evaluated with another scanner (NanoZoomer 
XR), the DoMore-v1-CRC score tended towards slightly 
higher values than it did when evaluated with the Aperio 
AT2 scanner, resulting in a higher DoMore-v1-CRC class 
for some patients near the classification thresholds 
(appendix p 38). However, the scores correlated strongly 
(Pearson’s r=0·956; 95% CI 0·951–0·961), and the 
classifier provided similar prognostic information with 
both scanners (appendix pp 9, 16, 18–25, 39–51). Thus, 
the classifier was also a strong predictor of cancer-specific 
survival in the primary analysis of the validation cohort 
when evaluated on NanoZoomer XR slide images (for 
uncertain vs good prognosis, HR 2·42, 95% CI 1·45–4·03; 
for poor vs good prognosis, 3·39, 2·36–4·87; p<0·0001; 
appendix p 39).

Discussion
Building on recent developments in machine learning, 
we have developed a biomarker for automatic prediction 
of the outcome of a patient resected for early-stage 

colorectal cancer, which directly analyses standard 
histological sections stained with H&E. To assay the 
biomarker, one convolutional neural network first 
automatically outlines cancerous tissue, and then a 
second convolutional neural network stratifies the 
patients into prognostic categories. In the validation 
cohort, the good and poor prognosis groups included 
nearly 90% of the patients and HR for cancer-specific 
survival was about four times higher in the univariable 
analysis and about three times higher in the multi
variable analysis. The multivariable result indicated 
that the new biomarker will be a useful supplement to 
the established markers and improve risk stratification.

Deep learning has already been shown to be suitable 
for detection and delineation of some tumour types,25 and 
various cancer classifications have been reported.26 
Previous studies have suggested that deep learning could 
be used to develop markers that potentially use basic 
morphology to predict the outcome of patients with 
cancer, but these findings have not been validated in 
independent cohorts.27,28 

We derived two markers using the same study setup, 
but different deep learning techniques. In training the 
Inception v3 marker, each tile was labelled with the label 
of its whole-slide image, while the DoMore-v1-CRC 
marker was developed using multiple instance learning 
to allow training on tile collections labelled with the label 
of its whole-slide image. Both markers were strong 
predictors of cancer-specific survival, but the DoMore-v1-
CRC marker performed slightly better and was the 
marker preselected for independent validation in the 
QUASAR 2 cohort.

Automatic prognostication procedures reduce human 
intervention and have the potential to increase repro
ducibility of biomarkers. New procedures such as the 
DoMore-v1-CRC markers might initially be performed 
as services carried out at specialised laboratories with a 
high degree of standardisation to avoid disparities in 
sample handling, including staining and scanning. Such 
centralised processing will also facilitate the collection of 
information on new procedures and enable improvements 
in the decision support to pathologists and clinicians. 

DoMore-v1-CRC classification Spearman’s correlation

Good prognosis (n=704) Uncertain (n=136) Poor prognosis (n=270) ρ (95% CI) p value

(Continued from previous page)

BRAF ·· ·· ·· 0·22 (0·16 to 0·28) <0·0001

Wild type 588/635 (93%) 89/118 (75%) 190/246 (77%) ·· ··

Mutated 47/635 (7%) 29/118 (25%) 56/246 (23%) ·· ··

Microsatellite instability ·· ·· ·· –0·10 (–0·16 to –0·04) 0·0018

Yes 66/661 (10%) 26/125 (21%) 40/253 (16%) ·· ··

No 595/661 (90%) 99/125 (79%) 213/253 (84%) ·· ··

Follow-up time, years 4·8 (3·7–5·1) 4·9 (3·1–5·1) 4·1 (2·8–5·1) –0·10 (–0·16 to –0·04) <0·0001

Data are  n (%), n/N (%), or median (IQR). CRC=colorectal cancer.

Table 3: Associations between the DoMore-v1-CRC class evaluated on Aperio AT2 slide images and different patient characteristics in the validation cohort
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As an increasing number of laboratories are becoming 
digitalised, accompanying decision support systems 
could include standardisation modules and facilitate a 
more rapid spread of the automatic procedures. Moreover, 
supplemented by increased robotisation of wet-lab 
procedures, the higher analytical throughput will allow 
decisions based on multiple samples from a tumour. The 
potential to base decisions on multiple samples from a 
single tumour could reduce the challenge of tumour 
heterogeneity, which could be a key to improved accuracy 
of prognosis.

The DoMore-v1-CRC biomarker correlated with several 
recognised prognostic factors, including the histological 
grading carried out by a specialised pathologist. The 
classifier performed better than did most other markers 
in terms of HRs in stage-specific multivariable analyses, 
and similar to the pN staging system. By contrast to the 
grading system, the classifier categorised only a few 
patients into the intermediate uncertain group.

The DoMore-v1-CRC classifier is technically simple to 
apply and can be delivered at pathology laboratories in a 
variety of settings. Although training the networks was 
resource demanding, new patients can be assayed in a 
few minutes using consumer hardware.

Clinically, the marker will inform discussion with 
patients with stage II and III colorectal cancer on the 
risks and benefits of different adjuvant treatment 
options. Although the drugs used in the adjuvant setting 
are limited to fluoropyrimidines with or without 
oxaliplatin, recent data demonstrate that 3 months’ 
treatment results in approximately the same survival 
outcomes as 6 months’ treatment for the majority of 
patients with stage III cancer, and suggest that high-risk 
patients (pT4 and pN2) might benefit from prolonged 
therapy.29,30 Hypothesising that patients with stage III 
cancer identified as poor prognosis by the DoMore-v1-
CRC classifier could benefit from prolonged combi
nation chemotherapy with oxaliplatin, or even consider 
experimental therapy combining fluoropyrimidine with 
oxaliplatin and irinotecan might be reasonable, because 
their high risk of cancer-specific death should positively 
skew the risk–benefit ratio of more aggressive treatments. 
However, patients with stage III cancer who were classified 
as good prognosis—the majority of whom are pN1—have 
very good survival with single-agent capecitabine, and 
good prognosis patients with stage II cancer have a very 
high chance of surgical cure, potentially eliminating the 
need for adjuvant treatment.

We plan to undertake prospective adjuvant trials 
stratifying patients into different prognostic groups 
using the DoMore-v1-CRC biomarker and randomly 
assigning patients into observation, low intensity, and 
high intensity regimes, depending on relative risk score. 
However, the currently available data could also be used 
by clinicians and patients to make joint and more 
informed decisions on adjuvant chemotherapy choices, 
as the proportional reduction in the HRs for recurrence 

and death from colorectal cancer following adjuvant 
treatment is remarkably consistent at 20% across most 
well designed clinical trials, thus translating into quite 
different absolute survival improvements for low-risk 
and high-risk subgroups.

A limitation of this study was that the DoMore-v1-CRC 
marker has not yet been tested prospectively in clinical 
settings and, although we are planning a clinical trial with 
randomisation, we at present only know the outcome of 
thorough retrospective testing. The test and validation 
indicate good transferability between populations, but 
challenges associated with standardisation remain, as 
shown by the differences between the tested scanners. 
Differences between laboratories might also be seen 
for sample handling procedures, and therefore introduc
tion into the clinic is suggested to be through services 
provided by specialised laboratories. A well known 
disadvantage of deep learning is its black-box nature. The 
DoMore-v1-CRC marker is associated with histological 
grading, but the marker is still using small-scale features 
of the histological images with unknown biological 
correlates.

In summary, a clinically useful prognostic marker has 
been developed using deep learning allied to digital 
scanning of conventional H&E stained, FFPE tumour 
tissue sections. The assay has been extensively evaluated 
in large, independent patient populations, correlates 
with and outperforms established molecular and 
morphological prognostic markers, gives consistent 
results across tumour and nodal stage, and can potentially 
be used by clinicians to improve decision making 
regarding adjuvant treatment choices.
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