
Deep learning facilitates utilization of 
large data sets through direct learning 
of correlations between raw input data 
and target output, providing systems 
that may use intricate structures in 
high-​dimensional input data to accurately 
model the association with the target 
output1,2. Numerous studies have reported 
on the applicability of deep learning in 
cancer diagnostics, including prediction 
of diagnosis, prognosis and treatment 
response3–5. Although many of these tools 
are claimed to perform comparably with 
or better than clinicians, few have yet 
demonstrated real-​world medical utility6. 
This is partly a natural consequence of the 
time needed for evaluating and adapting 
systems affecting patient treatment. 
However, many studies evaluating 
apparently well-​functioning systems are at 
high risk of bias6. Of particular concern is 
the frequent lack of stringent evaluation  
of external data7,8 and that some systems  
are developed or evaluated on data that are  
too narrow or inappropriate for the intended 
medical setting9–12. Thus, the lack of a 
well-​established sequence of evaluation 
steps for converting promising prototypes 

The design challenge involves issues 
related to selection of appropriate training 
data, such as representativeness of the target 
population (Box 1), as well as modelling 
questions such as how the variation of 
training data may be artificially increased 
without jeopardising the relationship 
between input data and target outputs 
in the training data18,19. The validation 
challenge includes verifying that the system 
generalizes well, for example performs 
satisfactorily when evaluated on relevant 
patient populations at new locations and 
when input data are obtained using differing 
laboratory procedures or alternative 
equipment15,16. Moreover, deep learning 
systems are typically developed iteratively, 
with repeated testing and often including 
various selection processes that may bias 
results20. Similar selection issues have 
been recognized as a general concern for 
the medical literature for many years21,22. 
Thus, when selecting design and validation 
processes for diagnostic deep learning 
systems, one will have to focus both on the 
generalization challenges and on preventing 
‘classical’ pitfalls in data analysis. We will, 
however, argue that both sets of challenges 
may be diminished by adopting certain fairly 
simple principles partly borrowed from the 
drug clinical trial field.

In this Perspective, we first describe  
the validation challenges with focus on the  
use of external cohorts. An evaluation of 
presumably influential deep learning 
studies is used to reveal the status of the 
field particularly with respect to validation 
procedures. We then consider generalization 
issues, especially looking at the importance 
of both natural and artificially induced 
variations in training data sets. In the 
last part, we highlight the importance of 
evaluating an external cohort according 
to a predefined primary analysis to reduce 
selection bias, and we outline a suggested 
sequence of evaluation steps for deep 
learning studies in cancer diagnostics, 
including the use of protocols with 
predefined analysis plans.

External cohort evaluation
Rigorous performance evaluation is 
particularly important due to the inherent 
high complexity of deep neural networks, 
as seemingly well-​performing deep learning 

into properly evaluated medical systems 
clearly limits the medical utilization of 
deep learning systems.

Whereas supervised machine learning 
techniques traditionally utilized carefully 
selected representations of the input data 
to predict the target output, modern deep 
learning techniques use highly flexible 
artificial neural networks to correlate input 
data directly to the target outputs1,2,13. The 
relations learnt by such direct correlation 
will often be true but may sometimes be 
spurious phenomena exclusive to the data 
utilized for learning. In fact, the millions 
of adjustable parameters make deep 
neural networks capable of performing 
perfectly in training sets even when the 
target outputs are randomly generated and, 
therefore, utterly meaningless14. Thus, the 
high capacity of neural networks induces 
serious challenges on how to design and 
develop deep learning systems, and on how 
to validate that such a system performs 
adequately in the intended medical 
setting15. Adequate clinical performance 
will only be possible if the system has good 
generalizability to subjects not included in 
the training data16,17.
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systems might utilize unintentional and 
possibly false features10–12 and respond 
unexpectedly to apparently irrelevant 
changes of the input data23. Failure to 
properly evaluate systems might have 
far-​reaching consequences, including 
misdirection of further research, diminished 
credibility of research findings and, most 
importantly, being worthless or even 
harmful to patients if used to influence 
treatment24,25.

The importance of an external cohort 
evaluation. As an initial evaluation step, 
the cohort used for development of a 
deep learning system is often partitioned 
randomly into three distinct subsets, 
hereunder referred to as ‘training’, ‘tuning’ 
and ‘test’, where the training subset is applied 
to learn candidate deep learning models,  
the tuning subset to select the deep learning 
system that appears to perform best and 
the test subset applied to evaluate the 
performance of the selected system8.  
The evaluation of the test subset may provide 
unbiased estimation of the performance in 
the development cohort. It may also provide 
some information on the system’s ability 
to perform well in other populations by 
considering the extent to which the system 
performs better on the training subset than 
on the test subset, as this indicates the level 
of overfitting to the training data. Systems 
that are highly overfitted to the training 
data are likely not to perform well on other 
populations as the noise utilized to improve 
the performance on the training subset may 
negatively influence the performance on 
other populations. However, even a system 

that performs similarly in training and test 
subsets might perform far from acceptably 
on cohorts distinct from the development 
cohort26,27. As discussed below and in Box 1, 
this may be caused by the system utilizing 
data features that correlate with the target 
outcome only in the development cohort, 
which could be viewed as overfitting to the 
entire development cohort, or might also 
be caused by important predictive features 
not being adequately represented in the 
development cohort. Thus, using a random 
subset of the development cohort for 
testing does not imply that the results have 
external validity, that is, the performance of 
the system observed in the test subset may 
not generalize to patients external to the 
development cohort.

For example, Zech et al.11 investigated 
a deep learning system for detection of 
pneumonia on chest X-​ray images and 
found that it was not able to uphold the high 
discrimination performance achieved in the 
development cohort when applied to cohorts 
from different institutions. In this case, there 
was a substantially higher disease prevalence 
in one of the training cohorts, and it appears 
that the poor generalization was in part 
caused by utilization of cohort-​specific 
characteristics. In particular, the system 
utilized metallic tokens that radiology 
technicians placed on patients to indicate 
laterality, as these often appeared differently 
in different cohorts. The authors further 
point out that the system might not even 
generalize well to other patients from the 
same institution as the development cohort, 
because some correlations between input 
data and target outcome in the development 

cohort may not be present in new cohorts 
from the same institution. Winkler et al.12 
found that, for their system, visible surgical 
skin markings present in the image were 
associated with a higher prediction score 
for melanoma. Similarly, Narla et al.10 
reported that the presence of a ruler beside 
a lesion in an image was associated with a 
higher malignancy score for skin cancer. 
Of course, neither skin markings nor rulers 
are causing the skin cancer, but the apparent 
correlation present in the development 
cohort is sufficient for the deep learning 
system to make use of these associations. 
It could be argued that more thorough 
quality control on the training data could 
mitigate this, but it is highly unlikely that 
one is able to detect and control for all 
potential confounding factors present in 
the training set.

Thus, unbiased performance estimation 
in a real-​world application of a deep 
learning system requires external cohorts 
representative of a target population22,28–30.  
In an external validation, no information  
from the external cohort should have 
influenced the design of the system or 
the estimation of any model parameter. 
Additionally, the external cohorts will 
implicitly define the patient population for 
which we have estimated the performance 
of the system. Thus, to know whether or 
not the results may be generalized to the 
entire target population, we need a broad 
validation where the cohorts may be 
regarded as representative of this desired 
target population, for example with 
respect to age, sex, ethnicity, geographical 
differences and disease prevalence31,32. Other 
types of evaluations may also be warranted 
prior to introducing the system in medical 
practice, including so-​called domain 
validation to evaluate whether the system 
performs consistently across a range of 
laboratories and technical equipment (Box 2).

Objective, non-​random separation 
of patients from the same hospital or 
subjects from the same country — for 
example, distinguishing between patients 
treated before and after a certain date — 
allows using one cohort for training and 
tuning, and another for what has been 
denoted ‘narrow validation’22 (Box 2). 
Such evaluation might provide unbiased 
performance estimation for a particular 
hospital. However, the two cohorts should 
not simply be a non-​random separation of 
an originally larger cohort but, instead, be 
processed separately when acquiring data 
and ascertaining target output33. Narrow 
validation is sometimes considered a limited 
type of external validation22.

Box 1 | Representation and biases in training data

As deep learning systems are developed by learning correlations between input data and target 
outcome directly from the training data, it is essential that the training data adequately represent 
the target population31,190. Otherwise, the system might learn correlations exclusive to the 
subpopulation represented in the training data and, consequently, perform worse on those not 
represented in the training data to a sufficient extent. Despite this, systems are often trained on 
data sets with prominent biases in demographic characteristics such as sex, race or ethnicity,  
with the consequence that many systems exhibit substantial discriminatory biases32,191,192. Restricting 
the target population to a particular sex, race or ethnicity would be appalling, and the medical 
application of any such deep learning system would systematically increase health-​care disparities. 
It is therefore pivotal to utilize truly representative and unbiased data for training deep learning 
systems in cancer diagnostics. This extends beyond ensuring representative distributions of 
relevant demographics in the training data set. Racial bias may also be encoded into systems if the 
target outcome used in the training is affected by histories of unequal treatment of patients based 
on race or ethnicity193, or is a proxy such as health-​care cost instead of health needs, which has 
been shown to be the reason why a widely used health-​care prediction algorithm exhibited 
significant racial bias194. Researchers should strive to identify and compensate for any such biases 
in their data sets, as failure to do so might reinforce health inequities if the deep learning systems 
are applied in clinical practice195,196. Deficient deep learning systems might be identified through 
rigorous evaluations in external data sets truly representative of the target population, or 
representative of minority populations, as well as through comprehensive analyses of system 
explainability across different demographic characteristics.
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Prevalence in recent studies. In order to 
investigate the prevalence of external cohort 
evaluation and other characteristics of 
recent studies on deep learning and cancer 
diagnostics, we searched PubMed on  
21 April 2020 for original research articles 
published in 2015 or later (Supplementary 
Methods). The search provided 3,578 results, 
and the number of publications roughly 
doubled each year since 2016. To explore 
the use of external cohort evaluation and 
other characteristics in some of the most 
prominent and perhaps best studies, 
we restricted our evaluation to those with  
at least 20 citations per year or published  
in a journal with an impact factor of 10 or 
larger. Although studies satisfying either 
of these criteria are presumably quite 
influential, we acknowledge that some of 
the other studies might be equally good. 
In particular, recent studies may not have 
had time to accrue 20 citations even if they 
are currently of great interest, and such 
studies would only be included if published 
in a journal with an impact factor of 10 or 
larger. This will exclude most studies 
published in new journals that are expected 
to receive impact factors of 10 or larger 
when these become available. However, 
we consider the selected papers to be 
sufficient for the purposes of this discussion, 
as they show that some aspects of study 
design could be better even in some of the 
presumably best studies. Only 257 (7%)  
of the 3,578 search results satisfied at least  
1 of these selection criteria, and another  
43 search results were excluded because  
the document type in Web of Science 
indicated that these were not original 
research articles. The remaining 214 studies  
were manually evaluated (Supplementary 
Table 1). We further excluded 6 studies 
that were not original research articles  
and 102 studies where deep learning was  
not used to predict or classify features  
relevant for cancer diagnosis, prognosis 
or treatment response, or such potential 
utility of the deep learning system was not 
evaluated. After also excluding 14 studies  
without human subjects or only pertaining 
to cell biology, we ended up with 92 eligible 
studies34–125, of which 85 (92%) used 
images as input to the deep learning 
system34–57,59–64,66,67,69–93,95–99,101–121,123,125.

Among 516 original research articles 
on artificial intelligence for diagnostic 
analysis of medical images published in 
2018, Kim et al.7 found only 31 studies 
(6%) that evaluated an external cohort. 
By contrast, 50 (54%) of our 92 eligible 
studies evaluated the performance of 
the deep learning system on an external 

cohort37,40,48,49,51,53,55,60,62,63,65,70,73–75,78–80, 

82–87,90,92,93,95,96,98,100–102,104–116,120,121,123,125.  
This discrepancy is most likely mainly 
attributed to our selection of presumably 
influential studies and partly attributed to 
the increasing usage of external cohorts 
(Fig. 1a); 34 (72%) of the 47 eligible studies 
published in 2019 and 2020 evaluated an 
external cohort compared with 9 (39%) of the  
23 eligible studies published in 2018 and 7  
(32%) of the 22 eligible studies published 
before 2018.

Among studies satisfying both of our 
selection criteria, 79% (11 of 14) evaluated 
an external cohort, compared with 68% 
(25 of 37) for studies that satisfied only 
the impact factor criterion and 34% 
(14 of 41) for studies that satisfied only 
the citation frequency criterion. It thus 
appears that journals with a high impact 
factor have a preference for studies 
evaluating external cohorts. This is 
consistent with the call by editors of leading 
scientific journals for rigorous evaluation 
of artificial intelligence tools126,127 and 
explicit prioritization of biomarker studies 
that evaluate external cohorts by some 
journals, for example Journal of Clinical 
Oncology.

Generalizability
Although increased use of external cohorts is 
an important step towards proper validation 
of deep learning systems, one is still left with 
the challenge of ensuring that the results 
obtained for such a population provide a 
satisfactory measure of the performance 
within the entire intended target population. 
This target population may typically be 
patients who have a specific cancer type, 
and although often restricted, for example, 
to certain stages of the disease, the target 
population is normally broad. Although 
some studies may use more than one external 
cohort and some use trials with many 
centres distributed over several countries, 
it is difficult to obtain external cohorts that 
entirely cover the target population. Thus, 
successful application of a deep learning 
system will depend on good generalization 
properties, so that good performance on 
one population also indicates satisfactory 
performance on populations differing with 
respect to some properties. Fortunately, 
exploring generalization in deep learning is an 
active research area128, and by utilizing certain 
design principles, deep learning systems 
have shown remarkably good generalization 
performance on numerous tasks2–5.

Box 2 | Approaches for evaluating a deep learning system

Different approaches for estimating the performance of a deep learning system provide indications 
of the system’s ability to make accurate predictions in different scenarios. Even if successful, 
internal and narrow validations do not indicate a general medical validity in themselves.  
Successful broad or domain validations might warrant assessment of the system’s medical utility  
in prospective, randomized phase III clinical trials.

Internal validation
Internal validation is the evaluation of a deep learning system’s performance in the development 
cohort. This can be done by evaluating the performance in a randomly sampled subset of the 
development cohort disjoint from the training and tuning subsets, or by using resampling 
techniques such as cross-​validation or bootstrapping22.

Narrow validation
Narrow validation is the evaluation of a deep learning system’s performance based on a cohort that 
is similar to but differs non-​randomly from the development cohort, for example on a cohort from 
the same hospital as the development cohort but sampled in a time interval disjoint from the time 
interval when the development cohort was sampled. No information from the narrow cohort 
should have influenced the development of the system, including that it should be collected  
and handled separately from the development cohort.

Broad validation
Broad validation is the evaluation of a deep learning system’s performance based on a cohort 
geographically separate from the development cohort, for example from a different hospital or 
country22. No information from the broad cohort should have influenced the development of the 
system.

Domain validation
Domain validation is the evaluation of a deep learning system’s performance in a setting that is 
very different from the one in which the system was developed197. This includes validation in a 
cohort with characteristics not represented by the development cohort, for example developing a 
method on one type and stage of cancer and validating it on another type or stage of cancer. Other 
examples are when the validation data are obtained by equipment not used in the development, 
such as imaging systems from different vendors, or by sample preparation procedures intentionally 
different from those used for the development cohort. Domain validations should also be narrow 
or broad validations, and are typically performed after successful narrow or broad validations.
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One way of increasing generalization 
is to control the neural network’s capacity 
to express complex mappings, for example 
by limiting the number of adjustable 
parameters in the network, imposing 
various constraints on the network or 
regularizing the optimization129,130. Transfer 
learning could also increase generalization, 
particularly when training data for the 
task at hand are scarce131,132. In transfer 
learning, the network is initialized with 
parameters optimized using data for a 
different task, typically using large data sets 
such as ImageNet133,134, which may mitigate 
overfitting at the possible cost of introducing 
biases135–137. Making the training data set 
more diverse and more representative 
of the target population is another way of 
increasing generalization138. Of particular 
importance is to ensure adequate and 
unbiased representation across demographic 
characteristics such as sex, race and ethnicity 
(Box 1). In addition to expanding the natural 
training data set, that is, the set of training 
data acquired from a range of patient 
samples with associated target outcome, one 
may artificially augment the training data set 
by applying smaller transformations on the 
inputs while maintaining their relationship 
to the target output18,139. This can reduce 
the network’s ability to memorize details 
of the training data and thereby increase 
generalization, especially in situations 
where the availability of training data is 
limited. The transforms can randomly 
change, often called ‘distort’, the input data 
by, for example, adding noise, erasing parts, 

shifting and scaling colours or altering the 
image geometry19. Artificially diversifying 
the training data may increase generalization 
by enabling the resulting system to ignore 
vagaries of the measurement process 
and even become applicable to multiple 
data acquisition procedures, for example 
different acquisition equipment140,141. Other 
augmentation techniques include those that 
generate artificial input data, for example 
by mixing multiple data inputs19. The value 

of augmentation techniques has been 
observed in various application domains19, 
including use on images obtained from 
radiology38,142–144 and histopathology141,145.

To illustrate the importance of the 
amount of and variation in training data, 
and more specifically show how data 
distortion may work to improve deep 
learning systems in cancer diagnostics, 
we show this type of analysis here using 
data from a previously published study113. 
This previous study applied deep learning 
to predict colorectal cancer-​specific survival 
directly from conventional haematoxylin 
and eosin-​stained sections, with training and 
tuning data derived from 2,473 patients 
from four cohorts. The performance was 
evaluated on an external cohort consisting of 
1,122 patients from a randomized controlled 
trial of a drug that was observed to not affect 
survival146. We applied the convolutional 
neural network called Inception-​v3 (ref.147), 
which is a network commonly used in 
medical image diagnostics8, in both the 
previously published analyses and the new 
analyses presented here.

Initially, we applied the same distortion 
process as in our published analyses113. This 
process artificially increased the variation of 
the training images by randomly distorting 
their colours, which is an augmentation 
technique that appears crucial when training 
deep learning systems in histopathology145. 
Initially, the maximum amount of distortion 
we allowed was quite modest (Fig. 2a). 
To illustrate the effect of reducing the 
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Fig. 1 | Characteristics of recent, presumably influential, deep learning studies in cancer diag-
nostics. a | Percentage of studies reporting on the evaluation of a broad or narrow cohort (Box 2) by 
year of publication, for all 92 eligible studies. b | Percentage of studies specifying 1, multiple or no 
primary performance metrics in the analysis of the external cohort, for the 50 eligible studies that 
reported on the evaluation of an external cohort. c | Percentage of studies specifying a predefined 
analysis of the external cohort, for the 50 eligible studies that reported on the evaluation of an external 
cohort. Studies that specified predefined analyses of external cohorts without defining which was the 
primary, if any, were categorized as ‘predefined analyses’. Studies with a predefined primary analysis 
were categorized according to whether the primary analysis was pre-​specified in a protocol or not.

Fig. 2 | Effect of data variation when training deep learning systems. For each analysis set-up,  
20 individual deep learning systems were trained and tuned for prediction of colorectal cancer-specific 
survival using images of haematoxylin and eosin-​stained sections acquired by both Aperio AT2 (Leica 
Biosystems, Germany) and NanoZoomer XR (Hamamatsu Photonics, Japan), as in the previously pub-
lished analyses113. The individual systems were applied to evaluate the external cohort using 
NanoZoomer XR slide images, and the concordance index (c-​index) of the system’s binary output was 
computed. Standard box plots were made using Stata/SE 16.1 (StataCorp, USA). The matched random 
subset contained the same number of training and tuning patients with and without cancer-​specific 
death as in the Gloucester cohort, in total 979 patients. a | An example image from the training data 
set and the results of applying the maximum possible amount of colour distortion at each step in the 
random distortion process used in the published Inception-​v3 analyses113. Generally, the distortion 
process applies random colour distortions to an image by converting the image to HSV colour space, 
adding a random value between –0.05 and 0.05 to the hue, scaling the saturation by a random value 
between 1/1.1 and 1.1, adding a random value between –0.1 and 0.1 to the saturation, scaling the 
brightness (or, technically, the value channel in the HSV colour space) by a random value between 1/1.1 
and 1.1, adding a random value between –0.1 and 0.1 to the brightness and converting back to RGB 
colour space. Intuitively, the leftmost and rightmost images represent the range of the random colour 
distortion, that is, the minimum and maximum possible amount of colour distortion for the applied dis-
tortion process, where the minimum is no colour distortion. Scale bar, 100 µm. b | Effect of changing 
the number of patients in the training and tuning subsets when using the original amount of colour 
distortion, as depicted in part a. c | Effect of changing the amount of colour distortion when training 
and tuning using the matched random subset. Label ‘0’ on the horizontal axis identifies deep learning 
systems trained without any colour distortion, label ‘1’ identifies systems trained with the colour dis-
tortion process depicted in part a and label ‘4’ identifies systems trained with the colour distortion 
process depicted in part d. d | Similar to part a, but four times the amount of colour distortion was used 
at each step in the distortion process. Scale bar, 100 µm. e | Effect of changing the amount of colour 
distortion and the number of patients and cohorts in the training and tuning subsets.
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number of patients while keeping the 
patient heterogeneity implied by having data 
from four cohorts, we randomly sampled 
979 patients in such a manner that the data 
had the same number of training and tuning 
patients with and without cancer-​specific 
death as in the cohort from the Gloucester 
Colorectal Cancer Study, UK (the largest  
of the four training and tuning cohorts).  
The decreased performance of the resulting 
deep learning system when evaluated on  
the external cohort (Fig. 2b) exemplifies the  
importance of a large natural training 
data set and its intrinsic variation138. 

Further reduction of the number of patients 
decreased the performance further; training 
and tuning on a quarter of the 979 patients 
or fewer (that is, fewer than 250 patients) 
provided systems that did not perform 
substantially better than random guessing 
(Fig. 2b).

We then showed that modifying 
the distortion process may mitigate 
for the performance loss observed when 
reducing the number of patients in training 
and tuning. Compared with using all 
2,473 patients for training and tuning, 
using 979 randomly selected patients and 

four times the original amount of colour 
distortion provided similar performance 
on the external cohort (Fig. 2c). For this 
modified distortion process we allowed 
quite substantial colour distortions 
(Fig. 2d), and the results showed that 
artificial augmentation may, in some cases, 
compensate for limited natural training and 
tuning data. However, increasing the amount 
of colour distortion further provided 
worse performance (Fig. 2c), illustrating the 
trade-​off between preventing overfitting 
through random distortions and occluding 
relevant information for the prediction task.
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Randomly sampling 979 patients 
from all four cohorts maintained much 
of the variation in the natural training 
and tuning data. If we instead used only 
the Gloucester cohort, which contained the 
same number of training and tuning patients 
with and without cancer-​specific death 
as in the random sample, we obtained 
worse performance on the external 
cohort, most clearly when including more 
colour distortion in training (Fig. 2e). This 
underlines the importance of designing 
studies such that the natural training 
data are diverse, and Fig. 2e additionally 
illustrates that natural variation and artificial 
variation work well together to increase 
generalizability.

In general, the most suitable distortion 
process will depend on the particular 
medical prediction task because the involved 
data will tolerate different amounts of the 
various types of distortions before true 
correlations between input and target 
output are occluded. For instance, deep 
learning systems that classify based on 
images of skin lesions or tumour sections 
are likely to benefit from being invariant 
to rotations, whereas systems aimed at 
supporting radiology might rely on the 
orientation in images of larger organ 
structures and, thereby, perform worse if 
forced to be rotation invariant. Thus, the 
distortion process needs to be fine-​tuned 
to the particular application, as findings 
about which distortion process appears most 
beneficial in one scenario — for example, 
findings from the example presented 
in Fig. 2 — are not necessarily directly 
applicable to other scenarios. However, 
the general principle is that including much 
and varied training data is important. As 
the importance of artificial augmentation 
decreases with the amount and diversity in 
the natural training data, prediction tasks 
where the true correlations between input 
data and target output are easily obscured by 
distortion warrants a more comprehensive 
natural training data set.

Predefined primary analysis
In the development of a deep learning 
system, researchers will often evaluate 
different systems sequentially, each time 
having the possibility to learn from 
interpreting the previous evaluations and 
adapt the system to the specific data used 
for evaluation. Such repeated evaluations 
will bias the estimates, and their dependence 
on previous evaluations makes established 
statistical approaches for adjusting for 
multiple comparisons not applicable148,149. 
Similar reanalysis issues may arise if the 

initial analysis of a specific deep learning 
system reveals issues that are then corrected 
and the performance is re-​evaluated. Such 
problems of repeated or multiple evaluations 
are well-​known from examinations of the 
data analysis in various types of published 
medical studies, and have been identified as 
important contributors to biased inference 
and irreproducible results20,150.

As discussed above, evaluation of an 
external cohort is required for unbiased 
performance estimation in a real-​world 
application of the deep learning system, 
but this is only a prerequisite as multiple or 
repeated evaluations may cause bias even if 
evaluating an external cohort. Great caution 
would therefore be needed when interpreting 
studies that report multiple analyses without 
specifying which was initially planned to be 
the primary analysis, if any.

Prevalence of predefined primary analysis. 
In our evaluation of recent, presumably 
influential, deep learning studies in cancer 
diagnostics, all studies performed multiple 
analyses of the external cohort typically in 
the form of evaluating multiple systems, 
analysing multiple subpopulations or using 
various analysis methods. Only 3 (6%) of the 
50 eligible studies that evaluated an external 
cohort used one of the well-​established 
methods for adjustment for multiple 
comparisons51,62,114, for example Bonferroni 
correction. This implies that most studies 
should have specified which analysis was 
considered the primary analysis prior to 
evaluation of the external cohort, if such 
a decision was made, in order to inform 
the reader which analysis was not affected 
by selection bias and to help distinguish 
studies with a predefined primary analysis 
from those that repeatedly evaluated the 
external cohort and might have ended up 
reporting severely biased performance 
estimates. Although the principle of using 
an external data set only once to evaluate 
the final hypothesis should be well-​known 
in the machine learning community151,152, 
it seems, currently, that there is no tradition 
for specifying the predefined primary 
analysis in deep learning publications 
other than those reporting on clinical 
trials. In our evaluation, 20 (40%) of the 
50 studies evaluating an external cohort 
specified one or more primary performance 
metrics55,60,73,82,83,85,86,93,98,102,105,108–110,113,115,116, 

120,121,125 (Fig. 1b), but only 8 (16%) of the 
50 studies specified a predefined primary 
analysis73,83,102,105,109,113,120,121 (Fig. 1c).

Pre-​specification of the primary analysis 
has previously been advocated in diagnostic 
and prognostic research153,154, but this is 

unfortunately still not common practise 
despite being the only direct protection 
against selection bias20. To ensure unbiased 
estimation, the primary analysis should 
be unequivocally specified prior to all 
investigations that could reveal correlations 
between input data and target output in 
the external cohort. This would require the 
researchers to define all relevant aspects of 
the validation prior to analysing the cohort, 
including the deep learning system, target 
output, and patient and input data in the 
external cohort. Predefining the primary 
analysis will entail a commitment to the 
main analysis, which implies that the analysis 
should be carefully planned in advance and 
that researchers will be discouraged from 
performing creative data dredging155.

Choosing the primary metric. Many 
medical questions are categorical in 
nature, for example whether tumour or 
not, whether mutated or not and whether 
to offer treatment or not. However, deep 
learning models often output continuous 
values reflecting the predicted probability 
of each possible outcome. In such cases, 
the predefined primary analysis should 
preferably evaluate a categorization of 
the model output aimed at answering the 
medical question. The primary analysis 
will then be comparing predicted and 
target outcome in the external cohort, 
for example by measuring the so-​called 
balanced accuracy156. Measuring the 
performance using categorical outputs often 
provides more conservative estimates157 
and avoids issues with metrics frequently 
applied to measure the performance using 
continuous outputs. For instance, the 
area under the receiver operating  
characteristic curve (AUC)158 and the 
concordance index (c-​index)159 are only 
affected by the ranking of the continuous 
outputs, not the prediction scores 
themselves160. Thus, such metrics may 
indicate that a deep learning system 
performs well even if it predicts markedly 
too high probabilities for all patients in a 
specific cohort, provided that the continuous 
outputs of the system rank the patients in 
a fairly correct order. In another cohort, 
the same system may similarly appear to 
perform well even if it predicts markedly 
too low probabilities for all of those patients. 
The generalizability of such a system is poor, 
yet this would not be evident from the AUC 
and c-​index of the continuous outputs but 
would be evident from the AUC and c-​index 
of a categorization defined irrespective of the 
external cohorts. The categorization may be 
defined by, for example, determining suitable 
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thresholds during tuning or selecting the 
outcome with the highest prediction score 
as the predicted outcome. Defining the 
categorization using the external cohort, 
even at predefined levels of, for example, 
sensitivity, adapts the categorical marker to 
the specific external cohort and may occlude 
shifts in the prediction scores as with the 
AUC and c-​index of the continuous outputs.

In our evaluation of recent, presumably 
influential, deep learning studies in cancer 
diagnostics, we found that 34 (68%) of the 
50 studies evaluating an external cohort 
reported the estimated performance of a 
categorical marker on the external cohort, 
with a categorization defined irrespective of 
the external cohort48,49,53,55,60,62,63,65,73,75,78–80,82,85, 

87,90,98,100,102,104–106,108–111,113–116,120,121,125. The 
proportion was lower for studies reporting 
on deep learning systems that used 
histopathology section images as input, 
with only 6 (40%) of 15 studies evaluating 
a fixed categorical marker on the external 
cohort48,55,82,111,113,114, which is surprising as 
most histopathological evaluations provide 
categorical values.

For certain deep learning systems, 
the intended medical application directly 
utilizes the system’s continuous output, 
for example to triage patients for further 
examinations, and in such cases the 
continuous output should be evaluated in 
the primary analysis. This may warrant 
additional analyses to reveal generalization 
issues that might be occluded by the 
selected performance metric, for example 
to consider a calibration plot in addition to 
the c-​index when evaluating a clinical 
decision support system for predicting 
patient outcome22,26. In general, the metric 
chosen for the primary analysis should 
be one that measures how well the deep 
learning system performs in the intended 
medical application. For instance, the overall 
performance in a classification task could be 
measured using the balanced accuracy.

From conception to application
All research with the potential to influence 
patient treatment should undergo careful 
evaluation sequences and be driven by 
protocols with a predefined statistical 

analysis plan153. Figure 3 illustrates what 
we consider natural and important steps 
in the development and evaluation of deep 
learning systems for medical applications.

The initial exploratory studies aim to 
answer whether deep learning appears 
suitable for the task at hand or whether 
further investigations based on deep 
learning are not warranted at this time, 
usually because the hypothesis seems 
ill-​founded or the available data are not 
expected to provide a system with adequate 
performance. The performance estimates 
obtained in such pilot studies are frequently 
inflated by the use of a limited development 
cohort, but promising findings may motivate 
further investigations. After a series of 
explorations, and possibly expansions, 
of the development cohort, the development 
should conclude by deciding which system 
appears to perform best on the intended 
medical task, considering also the sensitivity 
to vagaries of the measurement process. 
Of particular importance to prevent 
selection of a system that performs much 
worse on patients outside the development 

Level I Level IV Phase III

Development time Analysis time

Patient

Conceptual
idea

Make and
test pilot

Level II

Test modelling
options

Train and tune system
to be evaluated on

new cohorts

Might indicate
medical utility

Phase IV

Deep learning study Clinical trial

Level III

Post hoc
adjustments

Possibly biased 
performance

estimation

Unbiased performance
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Compare long-term 
benefits, harms and costs 

of clinical application

Unbiased estimation
of medical utility

Analysis time Analysis timeDevelopment time Development time

Patients PatientsPatients Patients Patients

Compare benefits
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Consider market
withdrawal and
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if necessary

Fig. 3 | Development and evaluation of deep learning systems. A deep 
learning project often begins with testing a conceptual idea using pilot soft-
ware based on a related open source implementation and data easily available 
to the researchers. Successful level I studies will typically evolve into explorative 
testing of different modelling options that might be more suitable for the par-
ticular task. The system that appears to perform best should be determined in 
a level II study that includes sufficient amount and variation in the natural train-
ing data set. Although performance estimates obtained in such studies are 
often inflated by the use of a subset that closely resembles the training subset, 
level II is an important step in the evaluation sequence that could motivate 
investigators to pursue evaluation of external cohorts and attract collaborators. 

As the lack of predefined primary analysis often entails post hoc adjustments 
influenced by the performance in the external cohort, we distinguish between 
studies without (level III) and with (level IV) a primary analysis unequivocally 
specified prior to all investigations that could reveal correlations between input 
data and target output in the external cohort. If the medical validity of a deep 
learning system is established in level IV studies, the indicated medical utility 
should be prospectively evaluated in randomized phase III clinical trials where 
the system directly intervenes with the current standard of care. If medical util-
ity is demonstrated and necessary governmental agencies approve routine 
medical application, the system can be applied in medical practice  
while monitoring the long-​term benefits, harms and costs of its application.
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cohort, the study could include a sufficient 
amount and variation in the natural 
training data set and use techniques 
such as data distortion to increase the 
variation artificially.

There is growing interest in explainable 
deep learning systems161–163, including the 
creation of inherently more explainable 
systems and post hoc explanations of 
existing systems164. For image classification 
tasks in particular, so-​called saliency maps 
visualize the contribution of each pixel to 
the final prediction score and can be created 
using numerous different techniques165–167. 
By increasing the transparency, the more 
explained systems might have more 
predictable generalizing abilities. This may 
be used to identify target populations within 
which the system is expected to generalize 
well or settings where the system is prone to 
fail. For example, Winkler et al.12 used such 
a technique to support their finding that 
surgical skin markings unduly increased 
the system’s prediction score for melanoma. 
Although current explainability techniques 
might suggest generalizability, and thereby 
suggest suitable target populations or 
influence the selection of which system 
to evaluate further, they will only provide 
indications and, thus, not reduce the need 
for proper validation.

Whereas efficacy studies of 
pharmaceutical products are usually 
preceded by prospective trials to estimate 
basic features such as safety and dosing168, 
deep learning systems for diagnostic 
purposes can to a larger extent utilize 
retrospective cohorts, for example from 
earlier clinical trials or medical practice. 
Given the risks, time frame and costs of 
interventional research168–170, we recommend 
rigorous, retrospective analyses to evaluate 
the medical validity of a deep learning 
system by conducting an external validation 

according to a predefined primary analysis. 
The results of such studies provide valuable 
information to direct further research, thus 
warranting publication regardless of the 
significance of the findings, which would 
also mitigate publication bias.

Rigorous, retrospective analyses of a deep 
learning system might warrant conducting 
a prospective, randomized phase III clinical 
trial where the system directly intervenes 
with the current standard of care in order 
to evaluate the system’s medical utility in a 
specific real-​world application, considering 
both benefits and harms for patients 
in the target population30,171. Systems 
demonstrated to have medical utility and 
approved by necessary governmental 
agencies can be applied in medical practice 
while monitoring the long-​term benefits, 
harms and costs for each specific real-​world 
medical application in phase IV clinical 
trials. Such surveillance might eventually 
indicate that the system needs to be updated 
because of changes in medical practice or 
data acquisition172.

The levels of deep learning studies 
depicted in Fig. 3 and the phases of clinical 
trials were used to categorize recent, 
presumably influential, deep learning studies 
in cancer diagnostics in relation to the 
reliability of the performance estimation 
approach and the demonstrated applicability 
of the system in medical practice. Although 
some group sizes are very small, there 
appear to be notable differences between 
research fields defined by the input to the 
deep learning system (Fig. 4). The proportion 
of studies evaluating an external cohort 
was lowest for the 7 studies with only 
non-​image inputs, such as omics data (29%; 
2 of 7 studies), and highest for the 22 studies 
with images other than histopathology 
section and radiology images as input, for 
example from gastrointestinal endoscopic 

examinations or dermoscopic images 
(64%; 14 of 22 studies). Five (23%) of the 
22 studies with other images as input even 
had a predefined primary analysis of the 
external cohort73,102,105,109,121, which included 
the 3 studies reporting on a randomized 
clinical trial, all of which evaluated a deep 
learning system to aid gastrointestinal 
examinations102,105,121.

Recommended protocol items. When 
planning to evaluate the medical validity of 
a deep learning system through rigorous, 
retrospective analyses, we recommend the 
unequivocal specification of the predefined 
primary analysis to be documented in a 
study protocol. Relevant items in such 
protocols would differ from clinical 
trial protocols, which are the target of 
guidelines such as SPIRIT (Standard 
Protocol Items: Recommendations for 
Interventional Trials)173 and its extension to 
artificial intelligence174. Protocols should be 
developed before conducting the validation, 
and relevant items would therefore also 
differ from those in original research articles, 
which are the target of many reporting 
guidelines such as CONSORT (Consolidated 
Standards of Reporting Trials)175 and 
TRIPOD (Transparent Reporting of 
a multivariable prediction model for 
Individual Prognosis Or Diagnosis)22 as well 
as their extension or anticipated adaption 
to machine learning176,177. There is therefore 
a need to establish guidelines dedicated to 
study protocols describing validations of 
deep learning systems. We propose a non-​
exhaustive list of items that we consider 
essential in such protocols, termed Protocol 
Items for External Cohort Evaluation of a 
deep learning System (PIECES) in cancer 
diagnostics.

In order to be sufficiently concrete 
about the predefined primary analysis, 

Level I deep learning study Level II deep learning study Level IV deep learning study Phase III clinical trial

b  Radiology images as inputa  Histopathology section images as input c  Other images as input d  No images as input

Level III deep learning study

20 (50%)

2 (29%)8 (36%)

9 (41%)

2 (9%)

3 (14%)8 (35%)

14 (61%) 4 (57%)17 (43%)

1 (4%) 2 (5%) 1 (3%) 1 (14%)

n = 23 n = 40 n = 22 n = 7

Fig. 4 | Reliability of performance estimations in recent, presumably influential, deep learning studies in cancer diagnostics. Percentage of studies 
categorized in the different levels of deep learning studies or phases of clinical trials depicted in Fig. 3 for all 92 eligible studies separated by type of input 
to the neural network. The input was histopathology section images in 23 (25%) of the studies (part a), radiology images in 40 (43%) of the studies (part b), 
other images in 22 (24%) of the studies (part c) and other types of input in 7 (8%) of the studies (part d).

206 | March 2021 | volume 21	 www.nature.com/nrc

P e r s p e c t i v e s



the protocol needs to describe the deep 
learning system and how it will be assayed; 
define the external cohort, including 
its origin, what it represents in terms of 
medical setting and target population, and 
input data and target output; and clearly 
specify the performance evaluation. These 
three parts of the protocol form the basis 
of our PIECES recommendations together 
with a declaration of status (Box 3). The 
status declaration should scrupulously 
elucidate any investigations performed 
before finalising the protocol that could 

reveal correlations between input data 
and target output in the external cohort, 
or state that no such investigations 
were performed.

The PIECES recommendations are 
designed to facilitate identification of 
ambiguities and disagreements between 
the researchers planning to conduct an 
external validation as well as to provide a 
clear description of the predefined primary 
analysis as a reference for all readers, 
which may aid medical professionals in 
identifying well-​designed studies and their 

applicability to their own clinical practice. 
The thought and work that should go 
into making such a protocol could also 
allow the researchers to make appropriate 
changes prior to performing the external 
validation. For instance, considering 
what the external cohort is intended to 
represent and how the deep learning system 
is envisioned to be applied in practice 
could affect the inclusion and exclusion 
criteria for patients and samples as well as 
the metric or statistical test applied in the 
primary analysis.

Researchers conducting an external 
validation would often like to perform 
multiple, related analyses to elucidate the 
performance of the deep learning system. 
To separate pre-​planned analyses from 
exploratory, post hoc analyses, the PIECES 
recommendation encourages specification 
of predefined secondary analyses that the 
researchers would like to commit themselves 
to report on publication of their findings. 
Such secondary analyses would be affected 
by the multiple comparisons problem, but 
predefining and reporting all secondary 
analyses would provide a transparency that 
would substantially increase the credibility of  
the results. Importantly, the specification 
of predefined secondary analyses does not 
diminish the validity of the predefined 
primary analysis. Any analyses the 
researchers consider reporting, but do not 
wish to commit themselves to report, should 
not be specified as secondary analyses in the 
protocol and therefore should be reported 
as exploratory analyses, even though they 
might be thought of prior to analysing the 
external cohort.

Study registration. We recommend 
registration of the study protocol in an 
online repository before analysing the 
external cohort. Most major trial registries, 
for example ClinicalTrials.gov and the 
International Standard Randomized 
Controlled Trial Number (ISRCTN) registry, 
accept registration of diagnostic accuracy 
studies154. These registries can be used 
to record external validation studies in 
deep learning, but some items will not be 
relevant and some important items, such as 
defining the deep learning system, will not 
be encouraged. A dedicated repository to 
register the study protocol describing the 
external validation of a deep learning system 
is therefore warranted. We recognize that 
it may be undesirable to publish a detailed 
study protocol in an online repository prior 
to conclusion of the study as this would 
reveal novel work prior to publication of 
the results and perhaps in some rare cases 

Glossary

Area under the receiver operating characteristic 
curve
(AUC). A performance metric measuring the concordance 
between a dichotomous outcome and the ranking  
of subjects provided by a continuous or categorical 
marker. An AUC of 50% indicates random guessing  
and 100% indicates perfect prediction. For  
dichotomous markers, the AUC and balanced  
accuracy are equivalent.

Artificial neural networks
Mathematical functions mapping input data to output 
representations, structured as a directed graph of nodes 
and edges.

Balanced accuracy
A classification performance metric calculated by 
averaging the proportion of true predicted outcomes 
across all possible outcomes. For dichotomous 
outcomes, this reduces to the average between the 
sensitivity and the specificity.

Capacity
The ability of a model class, for example a particular 
network architecture, to express complicated 
correlations between input data and target output. 
Model classes with high capacity have the potential  
to produce models that are able to map training  
data to target outputs with a high degree of accuracy,  
but are also more prone to overfitting.

Concordance index
(c-​index). A performance metric measuring the 
concordance between a target outcome, usually defined 
by time to event data, and the ranking of subjects 
provided by a continuous or categorical marker.  
A c-​index of 50% indicates random guessing and 100% 
indicates perfect prediction. For dichotomous outcomes, 
the c-​index and the area under the receiver operating 
characteristic curve are equivalent.

Deep learning
A class of machine learning methods that make use of 
successively more abstract representations of the input 
data to perform a specific task, typically implemented 
using artificial neural networks. They also consist of an 
objective function that compares the final output with a 
target output as well as an optimization method that is 
used to optimize the objective function.

Deep learning models
Computational models obtained by training deep  
neural networks. Note that a single training of a neural 
network produces a sequence of models as each new 
optimization iteration produces a model slightly different 
from the previous one. A tuning data set may be used to 
select among these models.

Deep learning systems
Systems utilizing one or more deep learning models to 
make predictions. A system’s output may be a function 
of the outputs of the models, for example by averaging 
and thresholding the model outputs.

Development cohort
A cohort used for training and, sometimes, tuning and 
internal validation of a system.

External cohorts
Also known as independent cohorts, these differ non-​ 
randomly from the development cohort. In cancer 
diagnostics, the external cohorts will often contain 
patients suspected of having the same disease or disease 
attribute, at risk of developing the same event or suspected 
to respond to the same treatment as patients in the 
development cohort. However, external cohorts may be 
intentionally more different from the development cohort.

External validation
An evaluation of a system’s performance on an external 
cohort that did not influence the development of the system.

Generalizability
The ability of a system to perform similarly on subjects 
not included in training to on those included in the 
training. Poor generalizability can be caused by 
overfitting to the training data or by the lack of  
generally relevant features in the training data.

Overfitting
Utilizing noise or features in the training data that are not 
generally relevant for the prediction task but cause the 
system to perform better on the training sample.

Supervised machine learning
A methodology in which learning occurs by mimicking 
the mapping of input data to target output labels.  
By contrast, the input data are not associated with  
any output labels in unsupervised learning.

Test
Although frequently used by the machine learning 
community to refer to an evaluation of a system’s 
performance, we use ‘test’ to refer to evaluations other 
than external validations, for example internal validations.

Training
Optimization of model parameters based on data.

Tuning
Informed selection of hyperparameter values (parameters 
not optimized during training) based on data. Examples 
include the network architecture, optimization method and 
threshold for a model’s continuous output. The nomenclature 
in machine learning is to use ‘validation’ instead of ‘tuning’.
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jeopardise publication. In a dedicated 
repository, a submission could be partially 
or completely invisible to the public and the 
protocol encrypted until the authors choose 
to reveal the submission and provide the 
required decryption key, thus facilitating 
preregistration of study protocols without 
requiring authors to reveal novel ideas 
prematurely.

Registration of observational studies 
has been advocated by editors of major 
clinical journals178,179, many editorial 
board members180 and researchers181,182, 
and the criticism this has received 
from epidemiologists in relation to the 
exploratory nature of epidemiology183–185 
does not apply to external validation studies. 
For diagnostic and prognostic biomarker 
studies in particular, the registration of a 
study protocol with a predefined analysis 
plan has been recommended by several 
researchers153,154,186–188, provided that it 
precedes the onset of the study189. This 
would facilitate a more balanced evaluation 
of the proposed marker, identification and 
prevention of selective reporting, increased 
transparency, reduced proportion of false 
positive findings, mitigation of publication 
bias through identification of unpublished 
studies, and prevention of unnecessary 
duplication of research while facilitating 
collaboration between researchers 
and identification of research gaps. 
Consequently, widespread preregistration 

of detailed study protocols for deep learning 
systems might translate into more rapid 
identification of promising systems and 
thereby expedite progression of the research 
field. It would also communicate a study to 
peers without disclosing the findings and 
interpretations prior to editorial and peer 
review, thus providing some of the benefits 
of preprint archiving while allowing critical 
appraisal of the findings and interpretations 
before publication.

Amendments of clinical trial protocols 
are common but should be tracked and 
dated173. Whereas clinical trials often 
take years to conduct due to patient 
recruitment and follow-​up, most external 
validations of deep learning systems use 
retrospective data, and the analysis part 
of the validation may be performed in a 
matter of days. Consequently, it should 
rarely be necessary to modify the study 
protocol describing the external validation 
of a deep learning system after initiating 
the validation. We therefore generally 
discourage protocol amendments, but if 
found necessary for a particular study, we 
recommend amendments to be included 
as postscripts to the study protocol, 
leaving the original protocol unaltered. 
Both the postscript and disseminations 
of the validation results should concretely 
specify what was changed as well as 
describe the motivation and rationale for 
the change.

Conclusions
Including much natural and artificial data 
variation when training rigorous deep 
learning systems appears pivotal, as analyses 
indicate its instrumental role in increasing 
the performance and generalizability of 
systems. Utilizing multiple sets of patients, 
samples and data acquisition procedures 
will diversify the training data, whereas 
augmentation techniques artificially enhance 
the variation further. The resulting systems 
may be capable of handling the diversity in 
routine medical practice and, in some cases, 
even generalize to completely new settings.

Going forwards, the medical validity of 
a deep learning system should be evaluated 
according to a preregistered study protocol 
specifying the primary analysis and using 
an external cohort representative of 
the intended medical setting and target 
population. This facilitates balanced 
performance evaluations by reducing 
selection bias and increasing transparency, 
and helps medical professionals distinguish 
rigorous, retrospective validation studies 
from studies that repeatedly evaluated the 
external cohort and might end up reporting 
severely biased performance estimates. 
Such preregistered study protocols would 
therefore assist in identifying deep learning 
systems that warrant prospective evaluations 
in randomized clinical trials and ultimately 
drive the development of systems that could 
transform current medical practice.

Box 3 | Recommended Protocol Items for External Cohort Evaluation of a deep learning System (PIECES) in cancer diagnostics

Status
•	Specify the date the protocol was last modified.

•	Scrupulously elucidate any investigations performed before finalising 
the protocol that could reveal correlations between input data and 
target output in the external cohort, or state that no such investigations 
were performed.

System
•	Describe the development of the deep learning system, including 

utilized cohorts, network architecture, hyperparameters and any 
categorization of the neural network model’s output.

•	Unequivocally specify how to assay the deep learning system in a blinded 
fashion for a single, new subject, including what the system receives as 
input and what it directly outputs.

External cohort
•	Describe the origin of the cohort, and explain why it should be regarded 

as external to the development cohort.

•	Precisely define criteria for inclusion and exclusion of subjects and 
samples, preferably starting from a consecutive series of subjects.

•	Clearly state the medical setting and target population that the cohort 
represents.

•	Specify the acquisition of input data, including whether it was acquired 
blinded to the deep learning system and target output. Note the 
expertise of any humans involved in the process, for example that a 
pathologist annotated the regions of interest in slide images.

•	Specify the ascertainment of target output, including whether it was 
ascertained blinded to the deep learning system.

•	If multiple external cohorts are planned to be analysed as a pooled cohort, 
then the preceding five protocol items should be completed for the pooled 
cohort and differences between the individual cohorts should be stated.  
If multiple external cohorts are to be analysed independently, the five 
preceding protocol items should be completed for each cohort, as well as 
subsequent protocol items if the predefined analyses differ between cohorts.

Analyses
•	Unequivocally specify the primary analysis, including the target output 

and the performance metric and/or statistical test with interpretation.

•	If the chosen metric or statistical test depends on other markers, 
describe how these markers were assayed and whether done blinded to 
the deep learning system and target output, and specify how missing 
values will be handled.

•	If the deep learning system was designed to evolve upon usage, for 
example by learning from unlabelled data or adapting to a cohort, 
specify that this will not be done when evaluating the external cohort. 
The system’s prediction should thus not depend on the order in which a 
set of patients is evaluated and should also be identical if the same 
patient is evaluated multiple times.

•	If additional analyses will be performed and reported in disseminations, for 
example of other deep learning systems, target outputs, metrics or statistical 
tests, or in specific patient subgroups, specify these analyses in the same 
manner as the primary analysis and identify them as secondary analyses.
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